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ABSTRACT 

Automatic speech recognition algorithms generally rely on the assumption that for the 
distance measure used, intraword variabilities are smaller than interword variabilities so 
that appropriate separation in the measurement space is possible. As evidenced by degra- 
dation of recognition performance, the validity of such an assumption decreases from sim- 
ple tasks to complex tasks, from cooperative talkers to casual talkers, and from laboratory 
talking environments to practical talking environments. 

This report presents a study of talker-stress-induced intraword variability, and an algo- 
rithm that compensates for the systematic changes observed. The study is based on Hidden 
Markov Models trained by speech tokens spoken in various talking styles. The talking 
styles include normal speech, fast speech, loud speech, soft speech, and talking with noise 
injected through earphones; the styles are designed to simulate speech produced under real 
stressful conditions. 

Cepstral coefficients are used as the parameters in the Hidden Markov Models. The stress 
compensation algorithm compensates for the variations in the cepstral coefficients in a 
hypothesis-driven manner. The functional form of the compensation is shown to corre- 
spond to the equalization of spectral tilts. 

Preliminary experiments indicate that a substantial reduction in recognition error rate can 
be achieved with relatively little increase in computation and storage requirements. 
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CEPSTRAL DOMAIN TALKER STRESS COMPENSATION 
FOR ROBUST SPEECH RECOGNITION 

1. INTRODUCTION 

Current speech recognition systems generally degrade significantly in performance if the 
systems are not both trained and tested under similar talking conditions. A major reason for per- 
formance degradation when testing and training conditions differ is that people speak differently 
under different conditions. Previous research has demonstrated that differences in speech patterns 
can be caused by psychological or emotional stress,1"5 by the presence of intense background 
noise,5"7 by a demanding perceptual-motor or mental task,2"4 by physical exertion,2 and by natu- 
ral inconsistencies in pronunciation.8-9 Despite the knowledge that speech patterns change in 
stress and in noise and the demonstration of degraded recognition performance in stress, little 
speech recognition research has been directed at modeling systematic changes observed and at 
developing recognition systems that are resistant to such changes. 

This report presents a study of talker-stress-induced variations in speech cepstral coefficients, 
and an algorithm that compensates for systematic (but unknown a priori) changes observed. The 
study is based on an isolated-word Hidden Markov Model speech recognizer trained by speech 
spoken in various talking conditions. The organization of this report is as follows. In Section 2 a 
speech data base that has been used in the study is described. In Section 3 a baseline Hidden 
Markov Model (HMM) speech recognizer is defined. In Section 4 a multistyle training experi- 
ment is described. The success of the multistyle training experiment has prompted the study of 
the stress-induced changes in speech, which is discussed in Section 5, and the development of a 
stress compensation algorithm, which is discussed in Section 6. The compensation algorithm may 
be interpreted as an adaptive, word-hypothesis-driven form of spectral tilt equalization. Section 7 
presents experimental results. 

Except otherwise noted, the notations used in this report are as follows: boldfaced upper 
case letters such as "A" represent matrices, boldfaced lower case letters such as "b" represent 
column vectors, and lower case letters such as "c" represent scalars. Elements of matrices and 
vectors may be written as scalars with an appropriate number of subscripts. The lower case let- 
ters i and j are used as indices, the upper case letters N and M are used to indicate dimensionali- 
ties. Therefore, the matrix A may be written as [ajj]MN, the vector b may be written as [bj^. 
Lower case letters followed by one or more arguments enclosed in parentheses, such as "f(x)," 
represent functions. 

2. THE "SIMULATED STRESS" SPEECH DATA BASE 

The studies and experiments conducted in this research were based on the "simulated 
stress"10 speech data base recently collected by Texas Instruments, Inc. 

In this data base stress-like degradations of the speech signal were elicited by asking the 
speaker to produce speech in a variety of styles (normal, fast, loud, soft, and shout) as well as 



with 95-dB pink noise exposure in the ear to produce the Lombard effect.5 The vocabulary con- 
sisted of 105 words, including monosyllabic, polysyllabic, and confusing words. A complete list of 
the words is given in the Appendix. 

The data base was divided into training data and test data. Training data consisted of five 
samples of each of the 105 words collected in a random order under normal talking conditions, 
and test data consisted of two samples of each word under each simulated-stress condition. Data 
were collected from five adult males and three adult females using a 16-bit A/D converter, 
sampled at 20-kHz rate, in a quiet laboratory environment. The data were downsampled to 
8 kHz for laboratory usage. The total number of test word tokens was 10,080. 

To verify the effects of "simulated stress," a baseline Hidden Markov Model based recog- 
nizer (to be described in the next section) has been tested on this data base. Substitution rate (no 
rejection or deletion was allowed in the experiments) of this test is given in Table I. It is seen 
that, relative to normally spoken speech, the error rate increases significantly for the various style 
conditions. It is the purpose of this research to understand the causes for the performance degra- 
dation experienced, and to develop effective means to compensate for them. 

TABLE 1 

Substitution Rate (Percent): 

The "Simulated Stress" Data Base 

Condition Norm Fast Loud Noise Soft Shout Avg5* Avg6t 

Baseline HMM 1.0 6.1 29.1 19.6 13.5 86.4 13.9 25.9 

* Avg5 is the average error rate of all talking conditons except shout. 

t Avg6 is the average error rate of all talking conditions. 

3.    A HIDDEN MARKOV MODEL SPEECH RECOGNIZER 

The theory of Hidden Markov Models and the application of HMM to automatic speech 
recognition can be found in a number of papers.11"16 

Figure 1 shows the type of HMM we used in this research. The word model network is a 
linear sequence of nodes with no skip branches. The model is intended to be used on speech 
inputs consisting of one word with background (silence) at each end; the first and the last nodes 
are background nodes to provide a semi-open-endpoint recognizer. 
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Figure 1.    The 10-node left-to-right Markov model. 

The HMM model can be described by a matrix-vector pair{A,b}. A = [ay] is a bidiagonal 
state transition matrix, its elements are given by 

P, 

Pi 

j = i+l 

j = i 

otherwise (1) 

Note that p; is the transition probability from node i to node i + 1, and 1 - p; is the self-looping 
probability of node i. At each state a vector v of continuous variables is observed. The probabi- 
listic nature of the vector v is described by a set of joint probability density functions b = [f,(v)J. 

The observation vector v contains 12 mel-frequency cepstral coefficients, i.e., v = [Vj]]2. The 
cepstral coefficients are similar to those used by Davis and Mermelstein.'7 To compute a cepstral 
vector, 160 speech samples were read from the input, padded with 96 zeros, windowed by a 256- 
sample Hamming function and transformed into the frequency domain via 256-point FFT. In the 
frequency domain, magnitude of the spectrum is squared, multiplied by the function 

*0 = l + -d5ST     • (2> 

where f is frequency in hertz, to boost high frequency content. Logarithms of the frequency sam- 
ples are then taken. A set of 24 triangular-shaped windows (see Figure 2) are then used to com- 
puter averaged log spectral parameters x = [XJ]24- Notice that the bandwidths of the windows 
increase as their center frequencies increase; the areas under the windows are kept constant. 

From these averaged log spectral parameters x the cepstral coefficients V; are computed as 
24 , 

j=    X xk C0SD(k-T-)-^r]      j = 1,2, ... ,12 
k=l 

(3) 

Each node of the Hidden Markov Model is represented by a cepstral vector template which 
in turn is characterized by a jointly normal distribution with mean vector c and covariance 
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matrix R. In our model, we assume that all off-diagonal elements of R are zero. [This is justified 
in part by the fact that the result of the cosine transform in Equation (4) is approximately mutu- 
ally uncorrelated.18-19 Further justification is provided by the good recognition results obtained 
by us and by others using this assumption.] With this assumption, the covariance matrix can be 
reduced to a vector of variances, which we relabeled as r. 

In summary, the node transition characteristic of a Hidden Markov word model is described 
by the transition probability matrix A; the observation parameter statistics of each node are de- 
scribed by the cepstral mean vector c and the cepstral variance vector r. 

Training of the models uses the forward-backward algorithm,20 while recognition uses the 
Viterbi decoding algorithm.21 Cepstral coefficients are computed once every 10 ms. 

Since the recognizer makes a forced decision on each input word, substitution is the only 
type of error considered here. 

4.    AN EXPERIMENT ON MULTISTYLE-TRAINED HIDDEN MARKOV 
WORD MODELS 

A number of different training/testing procedures could be used to improve speech recogni- 
tion performance under stress. Ideally, a recognition system could be trained and tested under the 
same stress condition. This, however, is often not possible. A second alternative is to use 
dynamic adaptation of the models based on recent recognition results. This, again, may not be a 
satisfactory solution because stress conditions are transient. However, it is possible to use multi- 
style training.22 Multistyle training requires a talker to train a recognizer using words spoken 
with different talking styles instead of using words all spoken normally. It has been found to be 
easy for a talker to change to styles such as fast, slow, loud, and soft, producing changes in 
speech characteristics that are similar to changes that occur under stress. It remains to be demon- 
trated that multistyle training produces improved recognition under stress. 

An experiment on multistyle-trained Hidden Markov Model word recognition was per- 
formed. In this experiment, 11 speech tokens were used to train each word model: 5 tokens from 
the training data base, and 6 tokens, one per talking style except normal, from the test data base. 
Recognition tests were conducted on the remaining half of the test data base. The recognition 
error rates are listed in Table II. For comparison, the error rate of the baseline HMM system is 
also included. 

In comparing experimental results listed in Table II, we see a dramatic improvement in 
recognition performance. It appears that the HMM word models were able to assimilate the data 
from the multiple styles and to capture statistically the more invariant features of each word. In 
the next section we investigate the gross changes of model parameters resulting from multistyle 
training as well as from style training (as opposed to normal training). 



TABLE II 

Substitution Rate (Percent): A Comparison of Normal 

and Multistyle-Trained HMM Recognizers 

Condition Norm Fast Loud Noise Soft Shout Avg5 Avg6 

Baseline HMM* 1.0 6.1 29.1 19.6 13.5 86.4 13.9 25.9 

Multistylet 0.5 5.6 5.1 2.1 5.8 43.6 3.8 10.5 

* The baseline system was trained with 5 normally spoken word tokens per talker 
and tested on 10,080 test tokens. 

t The multistyle-trained system was trained on 11 style speech tokens per talker 
and tested on 5,040 test tokens. 

5.    CEPSTRAL DOMAIN STRESS COMPENSATION - DRIVEN 
BY OBSERVATIONS 

The success of the multistyle training experiment motivated a comparison of the model 
parameters trained under various talking styles to determine whether it would be possible to 
compensate for the cepstral changes through simple transformations on the cepstral means and 
variances obtained using normal training. Such transformation, if effective, would eliminate the 
need for asking the user to train the system with multiple styles and for incorporating multiple 
style data in the Forward-Backward training. 

The differences among normally trained, single-style-trained, and multistyle-trained word 
models are partially reflected in the average shifts of the mean values and in the average scaling 
of the variances of the cepstral coefficients. To study such differences, seven different sets of 
word models were examined. Six of the models were trained under six individual conditions 
(normal training, fast, loud, Lombard, soft, and shout, respectively), while the seventh was 
trained using a composite of all these conditions (multistyle). The cepstral means and variances, 
averaged over all words in the TI vocabulary, over all speech nodes in each word, and over all 
talkers, were computed for each of the models above. 

The mean cepstral shifts (i.e., cepstral means of the given model minus the cepstral means of 
the normal model) for each of the cepstral coefficients are tabulated in Table 111(a). Figure 3(a) 
plots mean cepstral shifts for four cases: soft; shout; average of fast, loud, and Lombard; and 
multistyle. Figure 3(b) plots the corresponding spectra of these mean shifts, contrasting the effects 
on spectral tilt of low vocal effort (soft) vs higher vocal effort (fast, loud, Lombard, and shout). 
Increased vocal effort increases the relative high frequency content, whereas the opposite occurs 
with low vocal effort. 



TABLE III 

Mean and Variance Variations in Style-Speech 

(a) Mean Shifts in Cepstral Domain* 

Coeff Fast Loud Lomb Soft Shout Multi AVG 

1 -0.61 -1.14 -0.84 0.90 -3.08 -0.61 -1.07 

2 -0.26 -0.50 -0.59 0.43 -1.94 -0.43 -0.59 

3 -0.03 -0.48 -0.34 0.37 -1.28 -0.26 -0.37 

4 -0.06 -0.50 -0.36 0.49 -1.09 -0.25 -0.39 

5 -0.02 -0.18 -0.08 0.27 -0.53 -0.10 -0.13 

6 -0.02 -0.38 -0.29 0.27 -0.70 -0.17 -0.29 

7 -0.02 -0.11 -0.05 0.12 -0.19 -0.03 -0.07 

8 0.04 -0.18 -0.06 0.05 -0.40 -0.07 -0.09 

9 -0.05 -0.16 -0.08 -0.01 -0.32 -0.06 -0.12 

10 -0.06 -0.23 -0.10 -0.02 -0.53 -0.13 -0.17 

11 -0.04 -0.13 -0.11 -0.03 -0.20 -0.10 -0.13 

12 -0.06 -0.15 -0.15 0.04 -0.09 -0.05 -0.14 

(b) Ratio of Variance 

Coeff Multi Coeff Multi 

1 2.07 7 1.55 

2 1.84 8 1.70 

3 1.75 9 1.84 

4 1.71 10 1.77 

5 1.47 11 1.83 

6 1.62 12 2.10 

* Becau 
are re 

se the di 
asonably 

fferences in the fast, loud, and Lombard conditions 
similar, their averages are listed in the last column. 
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It is well known that spectral tilt exhibits large variation when a talker speaks under stress. 
Such variation usually contaminates the distance measure and is one of the most significant 
causes of recognition performance degradation. It appears that the effect of spectral tilt could be 
compensated, to some extent, by applying the appropriate cepstral compensation to normally 
trained word models. 

Because variance estimation is less reliable than mean estimation, we have only compared 
cepstral variances of multistyle-trained models which used 11 training tokens with the normally 
trained models. Their ratios (multistyle/normal) are listed in Table 111(b) and plotted in Fig- 
ure 3(c). It appears that the major style-induced variations occur in the most slowly varying spec- 
tral components (corresponding to lower order cepstral coefficients), and in the most rapidly var- 
ying spectral components (corresponding to the higher order coefficients). 

The following cepstral compensation experiments were performed, in which new word mod- 
els were generated by modifying normally trained Hidden Markov word models by one or more 
sets of cepstral differences. The word models were talker-dependent, but the modifications were 
the same for all words and all talkers. 

(a) Single Model Compensation:—    The set of cepstral mean differences and var- 
iance ratios observed in multistyle-trained models [represented by filled 
squares in Figure 3(a) and (c)] was applied as compensation in recognition 
tests on all styles. 

(b) Multimodel Compensation:—    Three sets of cepstral mean compensations 
corresponding to the soft, the loud, and the shout-trained models, as well as 
cepstral variance ratios for multistyle-trained models, were applied to generate 
three new word models; together with the original normally trained word 
model, they were used in recognition tests on all styles. In recognition, the 
four models were used for each vocabulary word, and were treated indepen- 
dently and equally; in effect, the computation for HMM recognition was 
quadrupled. 

The recognition error rates of these experiments are listed in Table IV along with the error 
rates of the baseline system and the multistyle-trained system for comparison. The error rate 
reductions relative to the baseline system seem quite promising given the simplicity of the com- 
pensation technique. 

It is not clear how many different styles it would be useful to add in similar experiments 
before recognition performance would start to decline. However, evidence recently gathered23 

indicates that a small number of well-selected styles might be sufficient. The next section dis- 
cusses a variation of the above technique — hypothesis-driven stress compensation. 



TABLE IV 

Substitution Rate (Percent): 

A Comparison of Fixed Stress Compensation 

Condition Norm Fast Loud Noise Soft Shout Avg5 Avg6 

Baseline HMM 1.0 6.1 29.1 19.6 13.5 86.4 13.9 25.9 

Multistyle 0.5 5.6 5.1 2.1 5.8 43.6 3.8 10.5 

Single Model 1.2 4.6 15.2 12.2 15.4 79.5 9.7 21.4 

Multimodel 1.0 4.2 12.1 6.7 5.5 68.7 5.9 16.4 

6.   CEPSTRAL DOMAIN STRESS COMPENSATION - A HYPOTHESIS-DRIVEN 
APPROACH 

It is the high cost of increased computation and the uncertainty about training-style suffi- 
ciency and efficiency that prompted us to search for alternatives. As a result of this effort, the 
hypothesis-driven cepstral mean compensation technique, which adapts to the input speech and to 
the hypothesized reference word, was developed. Fixed multistyle variance compensation has been 
found beneficial for all styles and will be used in conjunction with the adaptive mean compensa- 
tion, unless stated otherwise. 

As depicted in Figure 4, a talker is modeled as an information source that puts out a 
sequence of deterministic cepstral vectors {ct}-.* Before the vectors are received by the decoder, 
we assume that they undergo two stages of contamination. 

SOURCE £y—e DESTINATION 

3 

Figure 4.    Model of the contamination of cepstral coefficients, where a is a random noise factor 
and x is a deterministic, but unknown, stress factor. 

* The subscript t is an index of time. 

10 



Stage 1 

A sequence of independent identically distributed (i.i.d.) random vectors {6t} is added to the 
cepstral sequence |ct} to create a new sequence |ut}: 

ut = ct + 6t (4) 

The sequence {8t} models the randomness of speech cepstral parameter outputs; its elements are 
assumed to be normally distributed with zero mean vector and diagonal covariance matrix (see 
discussion in Section 3). 

Stage 2 

A deterministic but unknown vector x is added to the sequence {ut} to create the observa- 
tion sequence |vt}, i.e., 

Vt = ut + x       • (5) 

The vector x is the additive "stress" component. It is assumed to have the functional form 
[see Figure 3(a)]: 

Xi = a e-Ni-D       , (6) 

and is further assumed to remain unchanged within a word interval. 

Given a sequence of observations vt, t = 1,2,...,T we have developed a procedure for estima- 
tion, based on maximum likelihood principles, of the parameters a and b in Equation (6). The 
remaining part of this section deals with the derivation of this estimation procedure; readers who 
are only interested in the experimental results may skip to the next section without loss of 
continuity. 

Our parameter estimation procedure is divided into two steps, the estimation of Xj and the 
smoothing: 

Step 1 (Estimating Xj) 

The probability density function of the observation Vj is given by 

(vi - ci - Xi)2 

f(v;) 
\J2no\ 

exp 
2a2 

(7) 

The likelihood function of the ith observation variable, vit for t = 1,...,T, conditioned on both 
the sequence of the ith cepstral coefficient C;t, t = 1,...,T and the ith "stress" component Xj is given 
by 

l(vil,...,viT|cil,...,ciT,xi)=    n 
t=i   V^ra; 

exp 
(vit ~ Cit ~ Xj)2 

2a2 
(8) 

11 



Taking logarithms of both sides, we obtain the log likelihood function 

L(vn,...,viT| cil,...,ciT,xi) = -T log^/w -   2)    :  
t=l 2°~ 

(9) 

The Xi that maximize Equation (9) is the classical maximum likelihood estimate of x;, it is given 
by 

Xi-  Y   Z  (vit - cit) 
t=i 

1 T      1 T 

"     X     Z   Vit ~   T    S   Cit 

t=l t=l 

We replace the sample average of Cj, which is not observable, by the expected average value, 
drived from the word hypothesis: 

2riCi 

c-E 

(10) 

2'j 
J 

2E 

j 

(ii) 

where the TJ'S are a set of mutually independent discrete random variables whose values represent 
the dwell time in each of the i nodes, and the summations are over all speech nodes. 

In Equation (11), rj is known to have geometric probability mass function 

PT.(k) = Pi(l-Pi)k-l        ,       k = 1,2,..., (12) 

where 1 - pj is the self-looping probability of node i. If the Hidden Markov Model has N speech 
N 

nodes and we let the random variable y -    V TJ, it can be shown that if P] ^ P2 ^...»* P^ the 
i=l 

probability mass function of y is the mixture distribution 

N 

P7(k) =    J WjPri(k)       ,        k = N, N + 1,..., 
i=l 

(13) 

12 



where 

w, 
2L Pjd-Pi) 

Pj-Pi 
(14) 

r     T: 
Since a closed form formula for E I —— has not been found, we use an approximation using up 

to the second-order moments. Let J 

N 

Vy =  2 Ti     • 

» 

(15) 

g(Tj,7i) 

then TJ and y-t are independent and the expectation can be approximated by 

1  , r. r,.\ + — / ^»2 a2g     ,  aV 
E[g(^i.7i)] "" g(Ti,7i) +T   <  7 + a Vi a,,2 1   9r2        " 97? 

ria7i - Vr, 

Fj + 7; (Fj + 7i)3 

with the means and variances given by 

1 

Pi 

N 

7, 2 
Pj j-i 

j* 

(1- Pi) 

Pi 

,2    - ,= 2 
2, <» -PJ> 

(16) 

(17) 

(18) 

13 



The estimation formula (10) becomes 

1    T N 

Xi = T  2   v't -   2  Efefa'TiH ci (19) 
t=l i=l 

In Equation (19) the first sum is over the observed cepstral coefficient sequence, and the second 
sum is over the parameters of the hypothesized model. Therefore, we refer to this technique as a 
hypothesis-driven technique. 

Step 2 (Smoothing Xj) 

After xi>---,Xi2 are estimated, we fit Equation (6) to them. A least-mean-square fit requires 
solving the following equations: 

and 

2 xi eW) 
V e-2b(i-D 

2 Xi e-Ni-0       X i XJ e-b(i-D 

(20a) 

(20b) 

where Equation (20b) can be solved numerically. A less computationally intensive and yet more 
robust fit (i.e., one which is less susceptible to the effect of outlying data) is given by fitting 
exponential functions to all pairs {xi>Xj}> i ^ j, or a subset of these paris, and then by averaging 
magnitudes and time constants of the fits. We have chosen to fit the pairs that contain x i and 

one of X2>X3>X4 and *S' namelv> {Xi>Xj}, J = 2,3,4,5. Therefore, 

i 
X| 

0 

X,Xj>0    and    |xil>lxjl 

otherwise 

1 

Xi      , b^O 

0        , otherwise 

and a and b are the average of nonzero a:'s and b:'s. 

(21) 

14 



7.    SUMMARY OF THE PROCEDURE FOR CEPSTRAL COMPENSATION* 
AND THE EXPERIMENTAL RESULTS 

Given the cepstral vectors of a test token and the Hidden Markov word model for a refer- 
ence (the procedure is done for every reference word), the procedure for the adaptive cepstral 
compensation and recognition is described as follows: 

Step 1:    Compute a set of stress components [c.f. Equation   (19)]. 

Smooth the stress components by fitting an exponential function to them 
[c.f. Equations (6) and (21)]. 

Step 2: 

Step 3: Subtract the values of the exponential function from the cepstral vectors 
of the test token. 

Step 4:    In recognition, perform likelihood tests using the compensated test tokens. 

In Table V we summarize the recognition error rates when the hypothesis-driven stress com- 
pensation is applied to the "simulated stress" data base. For comparison the error rates of the 

TABLE V 

Substitution Rate (Percent): 

A Comparison of Multimodel Fixed Stress Compensation 

with Hypothesis-Driven Stress Compensation 

Condition Norm Fast Loud Noise Soft Shout Avg5 Avg6 

Baseline HMM 1.0 6.1 29.1 19.6 13.5 86.4 13.9 25.9 

Multimodel 1.0 4.2 12.1 6.7 5.5 68.7 5.9 16.4 

Hypothesis-Driven 0.9 4.7 12.7 7.0 5.7 72.4 6.2 17.2 

baseline and of multimodel compensation are also included. This technique has also been applied 
to a more advanced 14-node, fixed-variance HMM system16 whose parameters contain cepstral 
coefficients as well as differential cepstral coefficients. Because cepstral variances are fixed in this 
recognizer, no variance scaling is performed. The recognition results, with and without cepstral 
compensations, are listed in Table VI. 

* The compensation technique is not restricted to a HMM baseline system, similar estimation 
formula can be derived for DTW (dynamic time warping) based recognition systems. 
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TABLE VI 

Substitution Rate (Percent): 

An Advanced HMM Recognizer 

Condition Norm Fast Loud Noise Soft Shout Avg5 Avg6 

Without Compensation 

With Compensation 

0.4 

0.4 

1.7 

1.7 

3.4 

3.4 

2.9 

1.4 

4.4 

2.4 

49.8 

45.3 

2.5 

1.9 

10.4 

9.0 

8.    CONFIDENCE INTERVAL ANALYSIS OF EXPERIMENTAL RESULTS 

We wish to demonstrate that the reductions achieved in substitution rate are statistically 
significant. 

Suppose that the probability of a substitution error is p; then the probability of committing 
k errors in a test data bse of n tokens is given by the binomial function 

Pr(k errors in n tokens) = (£) pk(l - p)n"k        . (22) 

The mean and variance of the number of errors, k, are given by 

M = np 

a2= np(l -p) (23) 

For large n we approximate the binomial function by the Gaussian probability density 
N[np,np(l - p)]. The confidence interval of 95% is given by (/u - 1.96 a, fi + 1.96 a). We define 
the parameter X as the ratio: 

1.96 a 
(24) 

so that the 95% confidence interval becomes (/x - X/u, n + Xfj.). Substituting (23) into (24), assum- 
ing p « 1, 

X^ 
1.96    1.96 

np V^ 
(25) 

For n = 8400, p = 13.9% (5-avg, baseline HMM) and p = 2.5% (5-avg, advanced HMM), we have 
X = 5.7% and X = 13.5%, respectively. The 95% confidence itnervals, corresponding to p = 13.9% 
and p =2.5%, are roughly (13.1%, 14.7%) and (2.16%, 2.84%), respectively. In Table V, the substi- 
tution error rate p = 6.2% (5-avg, hypothesis-driven compensation) lies well outside the interval 
(13.1%, 14.7%); similarly in Table VI the error rate p = 1.9% (5-avg, compensation) lies well out- 
side the interval (2.16%, 2.84%). Hence the improvements obtained using this type of compensa- 
tion are statistically significant. 
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9.    CONCLUSION 

Spectral tilt has been found to vary significantly for speech spoken in stressful talking envi- 
ronments. We studied the statistical variations of cepstral coefficients embedded in the framework 
of Markov models and found that the observed changes in cepstral mean values, from normal 
speech trained models to simulated-stress trained models, corresponded approximately to an 
exponential type of spectral tilt. A simple and efficient compensation technique, the hypothesis- 
driven cepstral compensation, has been formulated. Using this simple compensation technique, 
recognition experiments yielded significant reduction in error rate. 

It is likely that further improvement may be achieved via reliable silence/voiced/unvoiced 
separation before the application of cepstral coefficient compensation, with compensation for 
spectral tilt only in voiced segments. A Bayes estimate, that incorporates and updates a priori 
knowledge of the distributions of the stress component \i and of the parameters a and b in the 
smoothing process, may also be superior to our estimate. Other improvements may be achieved 
through more detailed understanding and modeling of speech variations in stress. 
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APPENDIX 
LIST OF WORDS IN THE "SIMULATED STRESS" VOCABULARY 

zero airspeed east mode sensor 

ten air echo narrow south 

one alpha elevation nav standby 

twenty altitude negative north start 

two auto erase north status 

thirty azimuth fix no steerpoint 

three back freeze off step 

forty bar fuel oh stop 

fifty bravo go out synthesis 

five break ground point target 

sixty change hello profile thousand 

six Charlie help quiet threat 

seventy combat history radar tracker 

seven comm hot range train 

eighty confirm hundred recall voice 

eight control inventory release weapon 

ninety cursor lock repeat west 

nine degrees map return white 

advise delta mark rubout wide 

affirmative destination medium select yes 
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